University of the Punjab, Lahore Course Outline

BS Chemistry Semester-II							
Programme	BS Chemistry	Course Code	Chem-103	Credit Hours	3		
Course Title	Physical Chemistry – II Thermodynamics		Course Type	Major			

Course Introduction

This course is developed to impart a scientific understanding of thermodynamic parameters and to use their knowledge in understanding the practical applications of thermodynamics. Here is a brief description of course outlines:

Brief introduction of second law of thermodynamics, concept of entropy, entropy change in reversible and irreversible process, entropy change for an ideal gas, entropy change due to mixing of ideal gases, effect of temperature and pressure on entropy, concept of free energy, effect of temperature and pressure on free energy, relationship between standard free energy and equilibrium constants. Clausius inequality, Nernst heat theorem and its applications, Nernst approximation, Maxwell's Relations, third law of thermodynamics, Experimental verification of third law of thermodynamics. Entropy change in solid/liquid and ideal gas, Adiabatic demagnetization. Vant's Hoff equation and Clausius-Calyepron equation. Fugacity and Activity, Adiabatic demagnetization.

Sterling's approximation, Concept of microstate and determination of most probable microstate, partition function (Q), its derivation and physical significance, Energy of system in terms of partition function, expression of thermodynamic functions (energy, enthalpy, entropy, heat capacity at constant pressure and volume and free energies) in terms of translational partition function (Qt), rotational partition function (Qr), vibrational partition function (Qv) and electronic partition function (Qe), Separation of partition functions, expression of free energy and equilibrium constant of reversible chemical reaction in terms of partition function. Entropy and probability.

Learning Outcomes

- 1. This course aims to deepen the understanding of thermodynamic principles, covering both classical and statistical thermodynamics.
- 2. The course will emphasize applying these principles to practical and emerging technologies.

Course Content		Assignments/Readings
Week 1	Unit-Classical thermodynamics Brief introduction of second law of thermodynamics Concept of entropy, Entropy change in reversible and irreversible process	
Week 2	Entropy change for an ideal gas Entropy change due to mixing of ideal gases	

Wook 2	relationship between standard Gibbs energy and equilibrium constants		
Week 3	Clausius inequality		
	Nernst heat theorem and its applications		
	Nernst approximation		
Week 5	Maxwell's Relations Third law of thermodynamics Experimental verification of third law of		
	thermodynamics		
Week 6	Entropy change in solid/liquid and ideal gas		
WEEK U	Adiabatic demagnetization		
Week 7	Van 't Hoff equation and Clausius— Clapeyron equation		
	Fugacity and Activity		
Week 8	Mid Term Examinations		
Week 9	Unit-II Statistical Thermodynamics Sterling's approximation Concept of microstate and determination of		
	most probable microstate		
Week 10	Partition function (Q), its derivation and physical significance Energy of system in terms of partition		
	function		
Week 11	Expression of thermodynamic functions (energy, enthalpy, entropy, heat capacity at constant pressure and volume and free energies) in terms of translational partition function (Q _t), rotational partition function (Q _r), vibrational partition function (Qv) and electronic partition function (Qe)		
	Continued		
	Continued		
Week 12	Continued		
W 1 12	Continued		
Week 13	Separation of partition functions		
Week 14	expression of free energy and equilibrium constant of reversible chemical reaction in terms of partition function Continued		
	Continued		
Week 15	Entropy and probability.		
Week 16	Final Term Examinations		

Textbooks and Reading Material

- 1. Nash, L.K., Elements of classical and statistical thermodynamics, Addison Wesley Co. Ltd., 1979.
- 2. Bhatti, H. N. and Farooqi, Z. H., Modern Physical Chemistry, Revised ed., Caravan Book House, Lahore, 2014.
- 3. Alberty, R. A. and Silbey, R. J. Physical Chemistry, 3rd ed., John Wiley & Sons, Inc., New York, 2001.
- 4. Atkins, P. W., Physical Chemistry, 7th ed., W. H. Freeman and Company, New York, 2002.
- 5. Chang, R., Physical Chemistry the Chemical and Biological Sciences, 3rd ed., University Science Books, Sausalito, CA, 2000.
- 6. Laidler, K. J., Meiser, J. H., and Sanctuary, B. C., Physical Chemistry, 4th ed., Houghton Mifflin Company, Boston, 2002.
- 7. Levine, I. N., Physical Chemistry, 5th ed., McGraw-Hill, Inc., New York, 2002.
- 8. Winn, J. S., Physical Chemistry, Harper Collins College Publishers, New York, 1995.
- 9. Noggle, J. H., Physical Chemistry, Harper Collins College Publishers, New York, 1996.
- 10. Engel, T. and Ried, P., Physical Chemistry, 1st ed., Pearson education, Inc. 2006.
- 11. Maron S.H. and Prutton C.F., Principles of Physical Chemistry, Macmillan and Co. Ltd., 1965.
- 12. Glasstone, S. Physical Chemistry, Macmillan and Co. Ltd., London, 195.
- 13. Physical...?

Teaching Learning Strategies

- 1. Lectures
- 2. Group Discussion
- 3. Laboratory work
- 4. Seminar/ Workshop

Assignments: Types and Number with Calendar

- 1. Numerical problem sets relevant to topic will be given as assignments from week 1 to week 16.
- 2. Literature review based assignment relevant to the course will also be given during the course.

Assessment					
Sr. No.	Elements	Weightage	Details		
1.	Midterm Assessment	35%	Written Assessment at the mid-point of the semester.		
2.	Formative Assessment	25%	Continuous assessment includes: Classroom participation, assignments, presentations, viva voce, attitude and behavior, hands-on-activities, short tests, projects, practical, reflections, readings, quizzes etc.		
3.	Final Assessment	40%	Written Examination at the end of the semester. It is mostly in the form of a test, but owing to the nature of the course the teacher may assess their students based on term paper, research proposal development, field work and report writing etc.		